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Abstract 50 
 51 
Context. 52 
Land-use change is one of the primary drivers of biodiversity loss. There is an urgent need for models 53 
that accurately predict how biodiversity might be affected by land-use changes, to help avoid further 54 
negative impacts and inform landscape-scale restoration projects. In order to be effective, such 55 
models must represent the different habitat and connectivity requirements of multiple species.  56 
 57 
Objectives. 58 
We explored the extent to which process-based modelling might fulfil this role, examining feasibility 59 
for different taxa and potential for informing real-world decision-making.  60 
 61 
Methods. 62 
We developed a family of process-based models (*4pop) that simulate landscape use by birds, bats, 63 
reptiles and amphibians, derived from the well-established poll4pop model (designed to simulate 64 
bee populations). Given landcover data, the models predict spatially-explicit relative abundance by 65 
simulating optimal home-range foraging, reproduction, dispersal of offspring and mortality. The 66 
models were co-developed by researchers, conservation NGOs and volunteer surveyors, 67 
parameterised with a combination of literature data and expert opinion, and validated against 68 
observational datasets collected across Great Britain.  69 
 70 
Results. 71 
The models were able to simulate habitat specialists, generalists, and species requiring access to 72 
multiple habitats for different types of resources (e.g. breeding vs foraging). We identified model 73 
refinements required for some taxa and considerations for modelling further species/groups. 74 
 75 
Conclusions. 76 
We suggest process-based models that integrate multiple forms of knowledge can assist 77 
biodiversity-inclusive decision-making by predicting habitat use throughout the year, expanding the 78 
range of species that can be modelled, and enabling decision-makers to better account for landscape 79 
context and habitat configuration effects on population persistence.  80 
 81 
 82 
 83 
Keywords: process-based modelling, biodiversity, foraging, dispersal, population dynamics, land-use 84 
change. 85 
  86 
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1. Introduction 87 
 88 
Human-driven land-use changes have caused habitat loss, fragmentation, degradation and 89 
homogenisation, leading in turn to biodiversity declines (Newbold et al. 2019). Reversing these  90 
declines and restoring ecosystems requires transformative change – not only in the way we use land 91 
(Leclère et al. 2020) but also in the way we represent and account for the needs of other species 92 
when we make land use decisions.  93 
 94 
Enabling decision-makers to better take the needs of non-human species into account requires 95 
models and tools that can predict how species may be affected by proposed land-use changes. Such 96 
models must realistically reflect species’ responses to landscape composition and configuration, 97 
over spatio-temporal scales that are relevant to both species and decision-makers. Many models are 98 
available for relating species occurrence or abundance to landscape properties. These range from 99 
process-based models, which use mechanistic understanding to simulate ecological processes, to 100 
pattern-based models, which use correlative methods to relate observed species 101 
occurrence/abundance to environmental variables (Zurell et al. 2022).  102 
 103 
Process-based models that simulate underlying processes are expected to have greater predictive 104 
power than pattern-based models in novel situations (Dormann et al. 2012), making them 105 
potentially more suitable for exploring consequences of proposed land-use changes. Many are 106 
explicitly designed to account for the joint effects of landscape composition and configuration (e.g. 107 
Bocedi et al. 2021) and they have greater flexibility to produce outputs at the spatio-temporal scales 108 
most relevant to species and decision-makers. This is because they don’t have to aggregate to 109 
coarser resolution to control for observational biases, in contrast to most correlative models derived 110 
directly from species observations (e.g. Boyd et al. 2023). Finally, some process-based models can 111 
integrate multiple forms of data (Zipkin & Saunders 2018), which can broaden the range of the 112 
species that can be modelled. For instance, for some species, there may be insufficient species 113 
records (either in terms of quantity or spatial coverage) to derive reliable correlative associations but 114 
a combination of discrete field measurements and expert opinion assessments may be available to 115 
parameterise a process-based model. Importantly, this combination of input data types also 116 
increases their ability to represent the needs of species with seasonal or life-cycle variation in 117 
habitat use. Species-landcover correlations will not always be sensitive to species’ habitat use 118 
outside of the season/situations when species observations are typically collected. For example, 119 
amphibians are typically surveyed in aquatic breeding habitats but may spend the non-breeding 120 
season in terrestrial habitats, while bird and reptile surveys may likewise focus on times of peak 121 
detectability during which habitat use may differ from usage at other times. Expert opinion and 122 
other knowledge sources may provide this information and can potentially be integrated into a 123 
process-based simulation.  124 
 125 
Modelling complex processes typically results in large numbers of parameters that must be set, 126 
calibrated or estimated. Highly detailed Individual-Based Models (IBM) are popular in ecology and 127 
involve tracking many individuals over potentially complex landscapes. This is computationally 128 
demanding and time consuming, especially if multiple scenarios are to be explored and/or large 129 
extents are to be modelled. While increases in computing power can help to offset these issues, they 130 
do constrain the utility of IBMs for large-scale landscape decision-making (Isaac et al 2018), 131 
especially if the aim is simply to get population-level predictions.  132 
 133 
Population-level, rather than individual-level, process-based models offer a potential compromise 134 
between representing ecological processes and retaining the ability to model sufficiently large 135 
spatial extents, at fine enough spatial resolution, to be relevant to landscape decision-makers. 136 
Poll4pop (Gardner et al. 2020; Häussler et al. 2017) is an example of such an intermediate-137 
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complexity (i.e. population-level), process-based model. Instead of tracking the status and explicit 138 
movement paths/decisions of individuals, it simulates how multiple individuals might ultimately be 139 
distributed, given their general movement process (e.g. optimal foraging). Designed to simulate the 140 
central-place foraging, population growth and dispersal processes of bees, poll4pop has been used 141 
to explore the national-scale consequences of fine-scale land-use decisions on bumblebee and 142 
solitary bee population size and distributions in the UK, accounting for the importance of habitat 143 
configuration for these mobile species (Image et al. 2022).  144 
 145 
A key advantage of this model is that it simulates both intergenerational dispersal behaviour and 146 
day-to-day foraging behaviour. This sets it apart from other process-based models (e.g. Rangeshifter; 147 
Bocedi et al. 2021) and most connectivity-focused tools (e.g. Condatis; Hodgson et al. 2012), which 148 
focus on the intergenerational connectivity needed for meta-population dynamics and climate-149 
induced range shifting. Yet, the optimum habitat configuration for facilitating such large-scale 150 
dispersal movements can be very different to the optimum configuration for satisfying the day-to-151 
day connectivity requirements necessary for local population persistence (Hodgson et al. 2011).  152 
Therefore, models that account for both are likely needed for supporting in-situ nature recovery.  153 
 154 
The poll4pop model accounts for this small-scale, within-home-range connectivity by rating 155 
landcovers according to their relative provision of different types of resource (nesting vs foraging; 156 
see Gardner et al. 2020), allowing for seasonal variation in resource provision/use. The productivity 157 
of any given nest then depends on the amount of foraging resources that can be gathered from 158 
surrounding landcovers, ensuring sensitivity to the configuration of nesting and foraging resources 159 
on small scales (while a separate dispersal process accounts for longer-range inter-generational 160 
connectivity between nest site locations). In doing so, the model steps away from traditional island 161 
biogeographic ideas of discrete habitat patches within an inhospitable matrix (MacArthur & Wilson 162 
1967) that are central to much spatial modelling in ecology and admits more flexible 163 
conceptualisations (Betts et al. 2014), where the actual combination of landcovers used and 164 
‘inhabited’ by a species may vary according to preference, availability and accessibility (given the 165 
species’ movement range) in any given landscape. Instead of identifying a species’ habitat with a 166 
landcover type, the model enables users to simulate how the ‘utilised habitat’ of a species in a given 167 
situation may be a bespoke combination of landcovers determined by the species’ 168 
needs/preferences and the relative availability/accessibility of landcovers meeting those needs 169 
within the landscape. The poll4pop modelling approach therefore has potential to represent 170 
landscape use by a wide range of different species, including habitat specialists, generalists and 171 
those that use different habitats for different purposes or at different times. However, to date, the 172 
approach has only been used to simulate landscape use by bees.  173 
 174 
In this study, we explore the potential to adapt the model to simulate other taxa of conservation 175 
concern. We develop adaptations for birds, bats, reptiles and amphibians and validate their 176 
predictions against species observations. Our aim is to test whether the model framework can 177 
simulate species with diverse ecologies. We also test species-level versus guild-level 178 
parameterisations of the bird model to determine when it is necessary to model individual species 179 
versus groupings of similar species when extending the model framework. Finally, we discuss the 180 
extent to which the extended *4pop approach might fill a key gap in biodiversity-inclusive landscape 181 
decision-making.  182 
  183 
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2. Methods 184 
 185 
Modelling and data analysis was carried out using R version 4.2.0 (R Core Team 2022) with QGIS 186 
used for additional spatial data processing (QGIS Development Team, 2022).  187 
 188 
All the *4pop models require an input landcover map in raster format – we first describe the 189 
generation of this driving landcover data, followed by the model development, parameterisation and 190 
validation approaches. 191 
 192 
We use the UK as our study area for model development due to availability of detailed spatial and 193 
validation datasets. 194 
 195 
 196 
2.1 Landcover data 197 
 198 
We generate a base landcover map for Great Britain by combining the UKCEH Landcover Map 199 
(Morton et al. 2020) and crop map (Land Cover Plus: Crops; Upcott et al. 2023) for the year 2019 and 200 
overlaying the locations of priority habitats given in the Natural England Priority Habitat Inventory 201 
(Natural England 2014), followed by urban green spaces from OS Open Greenspace Map, surface 202 
water features from OS Open Rivers and OS District Map, multi-carriageway roads from OS Open 203 
Roads, and railways from OS District Map (Ordnance Survey 2022). In addition, we separate semi-204 
natural grasslands and heathlands into upland (>300m) and lowland sub-categories using the OS 205 
Terrain 50 dataset (Ordnance Survey 2022). Table S7 details how the landcover classification systems 206 
of these datasets are aligned with the landcover classification system for which the models are 207 
parameterised. This combined vector dataset is then rasterised with 10x10m pixel resolution.  208 
 209 
The models can also ingest information on landcovers that occupy only a fraction of a pixel 210 
(additional ‘edge features’), where the widths of these features are input parameters. We therefore 211 
generate edge feature rasters denoting the presence/absence of the following ecologically 212 
important features: woodland edges, woody linear features (e.g. hedgerows), arable field margins, 213 
single carriageway roads, waterbody margins and watercourses (see Table S8 for details).  214 
 215 
 216 
2.2 Original model structure designed to simulate bees (poll4pop) 217 
 218 
Poll4pop (Gardner et al. 2020; Hӓussler et al 2017) is a process-based model that simulates the 219 
central-place foraging, population growth and dispersal processes of bees. It predicts spatially 220 
explicit, seasonally-resolved bee abundance and foraging activity for a given rasterised landscape. It 221 
can be run using parameters that represent an individual bee species or (more frequently) a ‘guild’ 222 
of bees with similar behaviour. Gardner et al. (2020) parameterised and validated poll4pop for four 223 
UK bee guilds: ground-nesting bumblebees, tree-nesting bumblebees, ground-nesting solitary bees 224 
and cavity-nesting solitary bees.  225 
 226 
The model allows for the fact the modelled guild may preferentially nest in certain habitats while 227 
preferring to forage in others; each landcover therefore has separate parameters representing its 228 
attractiveness as a nesting resource and its attractiveness as a foraging resource, for each guild. This 229 
parameterisation makes the model highly suitable for adaptation to other taxa that use different 230 
habitats for different purposes (e.g. breeding vs foraging). A resource mapping function uses these 231 
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parameters to convert the input landscape into separate maps representing the distribution of 232 
nesting resources and the distribution of foraging resources (seasonally resolved, as needed).  233 
 234 
The model initially seeds nests (i.e. reproductive females) in the landscape according to the 235 
distribution of nesting resources. A foraging function distributes foragers from all the nests across 236 
the foraging resources, assuming foragers spend more time in proximate and better-quality foraging 237 
areas. This is done by convolving the number of foragers at each nest site location with the 238 
distribution of foraging resources, using an attractiveness-weighted distance-decay kernel defined 239 
by the input foraging distance. This step calculates the foraging rate to each pixel in the landscape 240 
and the number of foraging resources gathered by each nest.  241 
 242 
If simulating short-lived solitary bees, there is foraging by the reproductive female only, during a 243 
single foraging season. The three-season approach used for longer-lived, colony-nesting bees is 244 
described in the supplementary material.  245 
 246 
A growth function relates the number of bees produced by each nest to the amount of foraging 247 
resources gathered, so enabling amount/accessibility of foraging resources to influence population 248 
size.  249 
 250 
The new reproductive females produced by each nest are dispersed across the landscape. This is 251 
done by convolving the number of dispersers at each nest site location with the distribution of 252 
nesting resources, using an attractiveness-weighted distance-decay kernel defined by the input 253 
dispersal distance. Availability of nesting resources limits the number of new reproductive females 254 
that survive to found their own nests the following year. This dispersal function enables availability 255 
of nesting resources and metapopulation dynamics to influence population sizes/distributions.  256 
 257 
The model iterates over multiple successive years until the steady-state population size for the 258 
landscape is reached.  259 
 260 
 261 
2.3 Adapting model structure to simulate other taxa (*4pop model family) 262 
 263 
We used the core functions from poll4pop (resource mapping function, foraging/dispersal functions 264 
and population growth function) to build adaptations of the model for other taxa: birds, bats, 265 
reptiles and amphibians, chosen to represent a variety of taxa of conservation concern. This involved 266 
redefining the central place (e.g. as a basking site in rept4pop) and movement timescales (e.g. 267 
foraging movements around the nest during the breeding season are represented in bird4pop, 268 
whereas longer-timescale seasonal foraging movements around a breeding pond are represented in 269 
amph4pop).  270 
 271 
Probabilistic yearly survival was also introduced to account for these taxa, unlike bees, living for 272 
multiple years. This gives the models increased sensitivity to species’ minimum resource 273 
requirements (equivalent to ‘minimum area requirements’ when modelling a habitat specialist). If 274 
there is only a small amount of forage-rich landcover within foraging range, this limits the amount of 275 
foraging resources a forager can gather and therefore the amount of offspring they produce. If the 276 
rate of offspring production falls below the yearly mortality rate, the population will die out locally 277 
and that particular patch of otherwise ‘suitable’ habitat will be unoccupied.  278 
 279 
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For reptiles, we also incorporated the effects of habitat shading (Fig. 2) by multiplying the landcover-280 
based basking site availability scores by the mean level of solar illumination received by each pixel. 281 
For amphibians, we included the effects road mortality (Fig. 3), since this can limit access to foraging 282 
habitat (Eigenbrod et al. 2008) and our validation dataset is specifically associated with amphibian 283 
road crossings (see Section 2.4). This was done by multiplying the predicted foraging distribution 284 
without road mortality by the cumulative probability of amphibians successfully reaching pixels 285 
occurring beyond roads, based on their expected traffic levels. This reduces the number of 286 
amphibians returning to breed within the model’s iterations towards steady state.  287 
 288 
Fig. 1 summarises the basic model structure. Table 1 summarises the adaptations made for each 289 
taxon, with full descriptions of each adaptation given in the supplementary material. All models are 290 
written in R and freely available (Gardner et al. 2023).  291 
 292 

 293 
Fig. 1. Schematic of generic *4pop model structure that was adapted for each taxon, showing its 294 
simulation of two movement scales (foraging and dispersal) plus probabilistic age-dependent 295 
survival, and its ability to separately account for effects of breeding resource limitation and foraging 296 
resource limitation on population size. Asterisk and dagger indicate where additions/alterations are 297 
made within rept4pop and amph4pop respectively (see supplementary material). The raster outputs 298 
of the model are described in white boxes beneath the functions that generate them.  299 
 300 
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 301 

 302 
Fig. 2. Schematic illustrating how common lizard foraging rates predicted by rept4pop are a function 303 
of availability of foraging and basking resources in the landscape, where the basking resources are in 304 
turn a function of both the habitats present and the level of solar illumination of those habitats. Note 305 
the inverted scale for the basking resource maps to ensure darker areas in the bottom left panel 306 
indicate more shading and/or less suitable landcover for basking activity. Example landscape is 307 
located within Surrey, UK.  308 
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Table 1. Summary of *4pop model adaptations.  309 
Model Taxon Central 

place 
Foraging by Foraging 

timescale 
Offspring 

production 
dependent on 

Dispersal 
of 

offspring 

Inter-year survival  Parameterised for 

poll4pop bees nest reproductive 
females (and 
workers, if 
social) 

seasonally 
resolved:  
- early spring 
- late spring 
- summer  

• foraging 
resources 
gathered 

• max. bee 
production 
parameter 

 

yes • none for existing 
reproductive females 

• nest site limitation for 
new reproductive 
female offspring 
 

• ground-nesting 
bumblebees 

• tree-nesting 
bumblebees 

• ground-nesting 
solitary bees 

• cavity-nesting 
solitary bees 
 

bird4pop nidicolous 
birds 

nest breeding 
pairs 

breeding 
season 

• foraging 
resources 
gathered 

• max. no. of 
chicks per 
year 

yes • probabilistic survival 
of adults and offspring 

• nest site limitation 

• woodland 
specialists 

• woodland 
generalists 

• edge-nesting 
farmland 
passerines 

• nuthatch 
• robin 
• yellowhammer 
• skylark 

 
bat4pop bats maternity 

roost 
breeding 
females 

breeding 
season 

• foraging 
resources 
gathered 

• assumes max. 
one pup per 
female 
 

no1 • probabilistic survival 
of adults and offspring 

• roost site and roost 
size limitation 

 

common pipistrelle 
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rept4pop site-faithful 
reptiles 

basking site 
(accounting 
for habitat 
shading) 

 

breeding 
females 

active season  • foraging 
resources 
gathered 

• max. clutch 
size 

yes • probabilistic survival 
of adults and offspring 

• basking site limitation 

common lizard 

amph4pop amphibians breeding 
pond 

breeding 
females 

active season  • foraging 
resources 
gathered 

• max. clutch 
size 

• max. tadpole 
density 

yes • probabilistic survival 
of adults and offspring 

• road mortality 

common toad 

1due to high female philopatry shown by bats (Fornůsková et al. 2014).  310 
 311 
  312 
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 313 
Fig. 3. Schematic illustrating how incorporating road mortality curtails the toad foraging distributions 314 
output by amph4pop. Example landscape is located within Oxfordshire, UK.  315 
 316 
 317 
 318 
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2.4 Model parameterisation 319 
 320 
Bird4pop was parameterised for three guilds of birds, representing groups with similar habitat 321 
preferences: woodland specialists, woodland generalists and edge-nesting farmland passerines. It 322 
was also parameterised for four individual species: nuthatch (Sitta europaea), robin (Erithacus 323 
rubecula) and yellowhammer (Emberiza citrinella), chosen as widespread representative species for 324 
the three guilds, respectively, and skylark (Alauda arvensis), chosen as an example of an open-325 
nesting farmland passerine. Bat4pop was parameterised for common pipistrelle (Pipistrellus 326 
pipistrellus), being a widespread bat species with the largest structured observational dataset 327 
available for validation (see Section 2.5.2). Rept4pop was parameterised for common lizard (Zootoca 328 
vivipara), chosen to represent a widespread reptile with limited mobility, while Amph4pop was 329 
parameterised for common toad (Bufo bufo), since, of the UK’s widespread amphibians, this is the 330 
most terrestrial (Sinsch 1988).  331 
 332 
An expert opinion questionnaire (n=4 experts; see supplementary material) was used to set the 333 
nesting and foraging resource parameters per landcover type used by bird4pop for each bird guild 334 
(the same parameters were also used for the representative species) and for skylark. Expert opinion 335 
was chosen because we required estimates of resource provision for distinct uses (nesting vs 336 
foraging etc., rather than general habitat associations) and robustness could be introduced by 337 
combining the judgements of multiple experts, each integrating their own literature knowledge and 338 
field experience of our specific mapped habitat categories. Similar expert opinion questionnaires 339 
were used to set the roosting and foraging resource parameters used in bat4pop (n=3 experts), the 340 
basking and foraging resource parameters used in rept4pop (n=10 experts), and the breeding and 341 
foraging resource parameters used in amph4pop (n=10 experts). Within each questionnaire, the 342 
experts rated 77 landcover types (based on those available in the input mapping data and 343 
distinctions considered to be ecologically meaningful for the modelled taxa) on an integer scale from 344 
0 = ‘not used/no resources’ to 5= ‘very high resource provision’ and rated how certain they were of 345 
their answers on similar 6-point scale from ‘no confidence’ to ‘high confidence’. We then calculated 346 
the mean resource scores per landcover type across all experts, weighted by their certainty scores, 347 
following the procedure described in Gardner et al. (2020). Copies of the questionnaires are 348 
provided in Supplementary Material and final parameter values are given in Tables S2-S5.  349 
 350 
Movement ranges, productivity and survival parameter values were based on available literature 351 
data, with abundance-weighted mean values calculated for the bird guilds (Table 2; Table 3). 352 
Population growth parameters regulate the conversion of arbitrary forage units gathered into 353 
offspring production and were set to reproduce observed responses to habitat fragmentation 354 
(Hinsley et al. 1996) in the case of bird4pop (Fig. S1) and the observed range of roost sizes (Mathews 355 
et al. 2018) in the case of bat4pop (Fig. S2). Due to lack of equivalent calibration datasets, we chose 356 
the population growth parameters that produced the maximum R2 in the model-data fit for 357 
rept4pop (see Section 2.5.3; Fig. S3), and the maximum possible number of validation sites (see 358 
Section 2.5.4) with steady-state non-zero population sizes when including road mortality effects for 359 
amph4pop (Fig.S4). 360 
    361 
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 362 
Table 2. Movement ranges, population growth and survival parameters used in bat4pop, rept4pop and amph4pop models.  363 

Species  Parameter Units Value Source 
Common pipistrelle Foraging range km 2 Bat Conservation Trust (2016) 
(bat4pop) Maximum roost density km-2 2.25 Value from Mathews et al. (2018) increased by order of 

magnitude to minimise spatial stochasticity in model 
predictions when comparing with (already highly stochastic) 
observational data.  

Maximum roost size breeding females 80 Set to reproduce range of roost sizes given in Mathews et al. 
(2018); see Fig. S2.   

Adult survival probability 
 

0.8 Sendor & Simon (2003)  
Juvenile survival probability 

 
0.53 Sendor & Simon (2003)  

Growth parameter a 
 

1.5 Set to reproduce range of roost sizes given in Mathews et al. 
(2018); see Fig. S2.  

Growth parameter b 
 

3 Set b = 2a, following Häussler et al. (2017). 
     
Common lizard Foraging range m 30 Upper limit; Léna, Fraipont & Clobert (2000) 
(rept4pop) Dispersal range m 60 Set to twice foraging range; Lena, Fraipont & Clobert (2000) 

classify dispersers as those moving >30m.  
Maximum basking density ha-1 625 Sorci, Clobert & Belichon (1996)  
Adult survival probability 

 
0.53 Sorci, Clobert & Belichon (1996)  

Juvenile survival probability 
 

0.2 Sorci, Clobert & Belichon (1996)  
Maximum offspring per female 

 
9 Inns (2009)  

Growth parameter a 
 

3.1 Set to value producing maximum R2 in the model-data fit; 
see Fig. S3.   

Growth parameter b 
 

6.2 Set b = 2a, following Häussler et al. (2017). 
     
Common toad 
(amph4pop) 

Foraging range m 1000 Typical mid-range value within wide range of measured 
values cited in Salazar et al. (2016).  

Maximum clutch size eggs per female 1500 Banks & Beebee (1986); Gittins, Kennedy, & Williams (1984) 
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Maximum tadpole density m-2 38 Reading & Clarke (1999) measured a maximum of ~1.3x105 

tadpoles in 0.34 ha pond (i.e. 38 tadpoles m-2) where there 
were suggestions of density dependence effects (b=0.819 
with 95% confidence limits 0.63-1.02 using Bartlett's three-
group method test).   

Fraction of tadpoles surviving to metamorphosis 
 

0.1 based on Fig 4 in Reading & Clarke (1999)  
Metamorph survival to breeding age probability 

 
0.08 Reading (1991) marked 5158 metamorphs in 1984 and 

recorded 41 returning as breeding adults over the 
subsequent 6 year period (due to the unknown sex ratio of 
the metamorphs, we combine their data for both male and 
female returners and use the data from their earlier 1984 
cohort only, as this reduces the number of surviving females 
omitted through not having matured enough to commence 
breeding before the end of their study period). This gives a 
metamorph survival fraction of 0.008. However, we find an 
order of magnitude increase on this is necessary to achieve 
sustainable populations across the majority of our validation 
sites when road traffic effects are included, hence we use a 
value of 0.08 in order to obtain foraging distributions for 
comparison with the observational data.   

Adult female yearly survival probability 
 

0.4 Gittins (1983)  
Growth parameter a 

 
0.01 Set to enable sustainable populations when traffic effects 

are included across maximum achievable number of 
validation sites (>80%); see Fig. S4.   

Growth parameter b 
 

0.02 Set b = 2a, following Häussler et al. (2017).   
Mortality probability on motorway 

 
1.00 Set using Fig. 5 in Hels & Buchwald (2001) and 2020 statistics 

on motor vehicle flow (thousand vehicles per day) by road 
class from UK Department for Transport (2021).   

Mortality probability on urban A road 
 

0.85 As above  
Mortality probability on rural A road 

 
0.75 As above  

Mortality probability on urban minor road 
 

0.50 As above 
  Mortality probability on rural minor road   0.20 As above 
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 364 
Table 3. Movement ranges, population growth and survival parameters used in bird4pop model. Survival probabilities and number of chicks produced per 365 
year are derived from Robinson (2005), where chicks per year is calculated as the number of broods multiplied by the mean clutch size. Dispersal ranges are 366 
taken from Paradis et al. (1998). Guild-level values are the abundance-weighted mean of the values for the constituent species listed in Table S6, weighted 367 
by the number of breeding territories of each species nationally given in Robinson (2005). Maximum nest density is derived from data in Batten (1976; see 368 
Supplementary Material for details). Foraging range and growth parameter a were set using Fig. 1 of Hinsley et al. (1996) and Fig. S1, with the same values 369 
used for all guilds/species (to ensure proportionally equivalent forage units to chicks conversion rates and due to lack of species-specific breeding season 370 
foraging range estimates for many species). Growth parameter b set to be twice the value of growth parameter a, following Häussler et al. (2017). 371 

Parameterisation Growth 
param a 

Growth 
param b 

Foraging 
range 

(m) 

Dispersal 
range 

(m) 

Maximum 
nest density 

(ha-1) 

Chicks 
produced 
per year 

Adult 
survival 

probability 

Juvenile 
survival 

probability 
Woodland Specialist 0.2 0.4 250 10000 ± 2000 5 12 ± 1 0.45 ± 0.02 0.13 ± 0.06 
Woodland Generalist 0.2 0.4 250 5800 ± 800 5 9.2 ± 0.8 0.47 ± 0.04 0.40 ± 0.04 
Farmland Passerine 0.2 0.4 250 9000 ± 2000 5 9.2 ± 0.8 0.41 ± 0.04 0.38 ± 0.06 
Skylark 0.2 0.4 250 6000 ± 4000 5 8.73 ± 0.04 0.513 ± 0.024 0.513 ± 0.024 
Nuthatch 0.2 0.4 250 7000 ± 2000 5 6.66 ± 0.05 0.51 0.51 
Robin 0.2 0.4 250 6000 ± 1000 5 9.74 ± 0.03 0.419 ± 0.014 0.41 
Yellowhammer 0.2 0.4 250 8000 ± 3000 5 6.88 ± 0.03 0.536 ± 0.028 0.529 

372 
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2.5 Model validation  373 
 374 
Table 4 summarises the observational datasets and statistical tests used for model validation, with 375 
full methodological details given in the supplementary material. Wherever possible, we used 376 
standardised, systematically collected datasets that allowed for control of observational biases. 377 
Since our mapping data relates predominantly to the year 2019, data was restricted to ~5 year 378 
period to enable averaging over year-to-year variation while minimising the effects of land-use 379 
changes and long-term abundance trends.  380 
 381 
Bird4pop and bat4pop were both validated against national recording scheme data collected by 382 
volunteers for the British Trust for Ornithology and the Bat Conservation Trust, respectively. To test 383 
the model’s ability to reproduce context-dependent habitat use, we also investigated whether the 384 
yellowhammer parameterisation of bird4pop could reproduce the interaction observed by Robinson 385 
et al. (2001), who found that yellowhammer abundance depends more strongly on area of arable 386 
habitat in pasture-dominated landscapes than in arable-dominated landscapes. 387 
 388 
Rept4pop’s common lizard foraging rate predictions were compared to observational data collected 389 
in Surrey, UK, since national-level recording schemes for reptiles are still under development in GB 390 
and this county currently holds the largest and most detailed digitised datasets from long-term 391 
standardised reptile surveys, collected by members of Surrey Amphibian and Reptile Group (SARG). 392 
Volunteer surveyors enter their data into SARG’s online ARGWEB system, which includes the facility 393 
for surveyors to record exact sighting locations. Consequently, validation was carried out at two 394 
spatial scales, testing the model’s ability to reproduce variations in relative abundance between sites 395 
as well as its ability to predict the exact locations of lizard sightings within sites.  396 
 397 
No comparable measures of common toad abundance across multiple sites were available to 398 
validate amph4pop’s relative abundance predictions. Instead, we attempted to validate the model’s 399 
predictions for common toad habitat use. The Toads on Roads Project, run by Froglife, supports a 400 
network of volunteer Toad Patrols, who assist toads across roads to reduce road mortality during the 401 
spring migration from terrestrial habitats to aquatic breeding habitats. We sent a questionnaire to 402 
Froglife’s Toad Patrols in May 2021 to collect information on which types of terrestrial habitats 403 
migrating toads were observed to be travelling from and their breeding locations. We then used 404 
amph4pop to simulate the foraging distributions (i.e. the predicted spatial distribution of foraging 405 
rates) of these breeding populations. We ranked habitats from those that were predicted to be most 406 
used to those predicted to be least used across all the sites and compared this to the relative habitat 407 
usage reported by the patrols (see supplementary material for details).  408 
 409 
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Table 4. Observational datasets and statistical tests used for *4pop model validation. See supplementary material for a full description of data preparation 410 
and validation methodologies.  411 

Model Observational 
dataset(s) 

Spatial 
coverage 

Temporal 
coverage 

n Statistical test 

bird4pop British Trust for 
Ornithology’s Breeding 

Bird Survey 

GB 2016-2020 4874 1km 
survey squares 

Generalised linear model with a Poisson error distribution of the 
form:  

ln(Ai) = β0 + β1Bi 
where: 
Ai = mean relative abundance in survey square i during the 5 year 
period, rounded to nearest integer 
Bi = mean number of breeding pairs per pixel predicted within 
survey square i by bird4pop 
βx = fitted coefficients, where a statistically significant positive 
value of β1 indicates successful validation. 
 
 

bird4pop Robinson et al. (2001) GB - 4874 1km 
squares 

Linear model with a Gaussian error distribution of the form: 
Bi = β0+ (β1,G1, β1,G2, β1,G3)G C i 

where: 
Bi = mean number of breeding pairs of yellowhammers predicted 
within BBS square i by bird4pop 
Ci = arable area within the BBS square (units = 1000ha) 
G = the group (factor) that the 33x33km tile surrounding the BBS 
square is assigned to, where groups are based on the 
arable:grass ratio (R) within the 33x33km tile and group 1 tiles 
have R< 0.5 (representing grassland-dominated landscapes), 
group 2 have 0.5 ≤ R < 2.5 (mixed), group 3 have R≥2.5 (arable-
dominated) 
βx = fitted coefficients, where β1,x interaction terms consistent 
with those found by Robinson et al. (2001) indicate successful 
validation. 
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bat4pop Bat Conservation 
Trust’s National Bat 

Monitoring 
Programme Field 

Survey 

GB 2016-2020 401 1km survey 
squares; 1778 

surveys 

Generalised linear model with a Poisson error distribution of the 
form:  

ln(Ai) = β0 + β1Fi + β2si + β3Ti + β4Ci + β5Wi + β6Ri + β7Si + β8Ei + β9Di 
where: 
Ai = total number of common pipistrelle passes (a measure of bat 
activity) across all spots surveyed on visit i to a given survey 
square 
Fi = mean common pipistrelle foraging rate per pixel predicted 
within the survey square by bat4pop 
si = number of spots surveyed on visit i 
Ti  = temperature (units = degrees Celsius) 
Ci = cloud cover (factor) 
Wi = wind strength (factor) 
Ri = rainfall (factor) 
Si = volunteer skill level (factor) 
Ei = volunteer experience levels (factor) 
Di = detector type (factor) 
βx = fitted coefficients, where a statistically significant positive 
value of β1 indicates successful validation. 
 

rept4pop Surrey Amphibian and 
Reptile Group’s Long-

term reptile 
monitoring dataset 

Surrey, 
England 

2016-2021 83 sites; 1311 
surveys 

Generalised linear model with a Poisson error distribution of the 
form: 

ln(Ai/ti) = β0 + β1Fi  + β2Ti + β3Hi + β4Yi + β5Di + β6Di
2+β7Di

3+β8S 
where: 
Ai = total number of adult common lizards recorded on survey i 
ti = survey duration (units = minutes) 
Fi = mean common lizard foraging rate per pixel within a 750m 
buffer of survey site centroid, as predicted by rept4pop 
Ti = air temperature during survey (units = degrees Celsius)  
Hi = relative humidity during survey 
Yi = year survey was conducted 
Di = the day of the year (where D=1 for 1st Jan)  
S = surveyor skill level 
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βx = fitted coefficients, where a statistically significant positive 
value of β1 indicates successful validation. 
 

rept4pop Surrey Amphibian and 
Reptile Group’s Long-

term reptile 
monitoring dataset 

Surrey, 
England 

2016-2021 1971 sightings 
across 62 sites 

Wilcoxon rank sum test to compare the median predicted 
foraging rate at exact sighting locations (excluding those 
associated with refugia) with the median predicted foraging rate 
at random locations within a 750m buffer of survey site centroid, 
where a statistically significant higher median at sighting 
locations indicates successful validation. 
 

amph4pop Toad patroller 
responses to ‘Your 

toads and their 
habitats’ questionnaire 

GB 2021 70 toad 
crossings 

Spearman’s rank test to compare observed habitat usage 
rankings with amph4pop’s predicted habitat usage rankings and 
with habitat usage rankings based solely on the mean percentage 
area of each habitat available within 10x10km around the 
validation sites. A stronger correlation with amph4pop’s 
predictions than with simple habitat availability indicates 
successful validation.  

 412 
 413 
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3. Results 414 
 415 

 416 
Fig. 4. Foraging rate predictions output by *4pop models (poll4pop, bird4pop, bat4pop, rept4pop and 417 
amph4pop) for a single agricultural landscape. Simulations were run at 10x10m resolution. Foraging 418 
rate units are arbitrary, with scales individual to each panel and shades therefore not comparable 419 
between taxa. Note that the landcover map shown has grouped some landcovers for ease of 420 
visualisation and does not show the fine-scale edge habitats (e.g. hedgerows, field margins) also 421 
input into the models. Example landscape is located on Leicestershire/Rutland border, UK. 422 
 423 
Fig. 4 shows the fully parameterised *4pop models run on a single example landscape, 424 
demonstrating their ability to illustrate fine-scale habitat use by species with different ecologies. The 425 
dynamic nature of the models is shown in fig. 5, which uses an underoccupied landscape to illustrate 426 
the foraging, population growth and dispersal processes underpinning the predictions.  427 
 428 
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 429 
Fig. 5. Rept4pop simulations demonstrating the dynamic spatio-temporal behaviour of the models. 430 
First panel shows predicted distribution of common lizard foraging activity within a 10x10km 431 
landscape that is fully occupied and subsequent panels show the ability of common lizard to disperse 432 
and recolonise the landscape over time if reduced to just ten randomly chosen populations in year 1. 433 
Local resource availability and inherent stochasticity in the model result in loss of some of these 434 
remnant populations while others expand. From year 30 onwards, the rescue effect of 435 
metapopulations results in more stable growth and population expansion. Within this simulation, the 436 
lizards’ foraging and dispersal kernels are 30m and 60m, respectively.  437 
 438 
 439 
Bird4pop’s predicted number of breeding pairs within the BBS survey squares showed a significant 440 
positive relationship with the surveyors’ counts and this was the case for all guilds and species 441 
parameterised (Table 5). The model-data fit for the woodland specialist guild showed the highest R2 442 
and the (edge-nesting) farmland passerine guild the lowest. The R2 was generally higher for the 443 
single-species parameterisations than the guild-level parameterisations (compare woodland 444 
generalist vs robin; farmland passerine vs yellowhammer), except for the woodland specialist guild 445 
(cf. nuthatch).  446 
 447 
The yellowhammer relative abundance predictions showed a positive association with area of 448 
arable, whose slope was significantly steeper for more arable dominated landscapes (Table 6). 449 
Repeating the analysis with model predictions from an alternative parameterisation 450 
(Yellowhammer_n; Table 6), where the yellowhammer nesting resource score was replaced with 451 
zero for all landcovers except for arable field margins and hedgerows, produced a context-452 
dependent trend that becomes significantly less steep as the wider landscape transitions to arable-453 
dominated, in better agreement with observations (Robinson et al. 2001). This alternative 454 
parameterisation still showed a significant positive relationship with the surveyors’ counts across the 455 
BBS squares but with lower R2 (Table 5).  456 
 457 
Bat4pop’s common pipistrelle foraging activity predictions showed a significant positive relationship 458 
with the total number of common pipistrelle passes recorded by surveyors, although the R2 for the 459 
model-data fit was low (Table 5). 460 
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 461 
Rept4pop’s common lizard foraging rate predictions showed a significant positive relationship with 462 
the total number of adult lizards recorded by surveyors (Table 5). The median predicted number of 463 
foraging lizards across the sighting locations was also significantly higher than the median predicted 464 
number of foraging lizards across the randomly selected locations within the 750m survey site buffer 465 
zones (Wilcoxon rank sum test; W = 2847391; P<0.001; Fig. 6).  466 
 467 
Table 5. Relationships between model predictions (m) and observed counts (c) of relative abundance 468 
or activity for those taxa fitted with a functional relationship of the form 𝑙𝑙𝑙𝑙 𝑐𝑐 ∝ 𝛽𝛽1𝑙𝑙𝑙𝑙𝑚𝑚. See methods 469 
section for details of taxa-specific control variables.  470 

Model Parameterisation Coefficient (β1) Standard 
error 

P value R2 

bird4pop Woodland specialist 93.2 0.9 <0.001 0.365 
 Woodland generalist 36.5 0.3 <0.001 0.165 
 Farmland passerine 15.8 0.8 <0.001 0.010 
 Nuthatch 94 2 <0.001 0.192 
 Robin 49.1 0.7 <0.001 0.205 
 Yellowhammer 102 2 <0.001 0.154 
 Yellowhammer_n 1420 40 <0.001 0.059 
 Skylark 71.3 0.8 <0.001 0.284 
bat4pop Common pipistrelle 6 2 <0.01 0.102 
rept4pop Common lizard 0.69 0.03 <0.001 0.183 

 471 
Table 6. Results from regressing mean number of breeding yellowhammer pairs predicted by 472 
bird4pop in each 1km BBS square (Bi) against the arable area within the BBS square (Ci; units = 473 
1000ha), allowing an interaction with the arable:grass ratio group (G) of the 33x33km tile within 474 
which the BBS square falls, i.e. from fitting Bi=β0+(β1,G1, β1,G2, β1,G3)GCi assuming a Gaussian error 475 
distribution. Results are shown for the original yellowhammer model parameterisation and for a 476 
second parameterisation (Yellowhammer_n), where yellowhammer nesting resource score is 477 
replaced with zero for all landcovers except for arable field margins and hedgerows. All β1,G1 are 478 
significantly different from zero (P<0.001) and all β1,G2 and β1,G3 coefficients are significantly different 479 
from their corresponding β1,G1 coefficient (P<0.001).  480 

Parameterisation β1,G1 β1,G2 β1,G3 R2 
Yellowhammer (9.3 ± 0.5) × 10−2   (14.8 ± 0.8) × 10−2 (16.0 ± 0.9) × 10−2 0.464 
Yellowhammer_n (5.6 ± 0.2) × 10−3   (2.5 ± 0.4) × 10−3   (1.1 ± 0.5) × 10−3   0.208 

 481 
Amph4pop’s predicted habitat-use rankings showed a significant positive correlation with the 482 
observed habitat-use rankings derived from the Toad Patrols’ questionnaire responses (Table 7). 483 
These correlations were stronger than correlations between the observed habitat-use rankings and 484 
rankings based solely on the mean percentage area of each habitat available within the 10x10km 485 
validation landscapes (Table 7). For the subset of sites that sustained common toad populations 486 
after road mortality effects were included in the simulations, including these limitations on habitat 487 
accessibility due to presence of roads further strengthened the correlation between observed and 488 
predicted habitat-use rankings (Table 7).  489 
 490 
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 491 
Fig. 6. a) Distribution of rept4pop’s predicted common lizard foraging rates (arbitrary units) at 492 
common lizard sighting locations recorded by surveyors during visits to SARG’s long-term reptile 493 
survey sites compared to its predicted common lizard foraging rates at a matched sample of random 494 
locations within 750m of the survey site centroids. b) Map of one survey site illustrating its sighting 495 
locations and randomly selected locations superimposed over rept4pop’s common lizard foraging 496 
rate predictions.  497 
 498 
Table 7. Spearman’s ρ values for correlations between observed habitat-use rankings derived from 499 
the Toad Patrols’ questionnaire responses and habitat-use rankings predicted by amph4pop, as well 500 
as habitat rankings based on the mean percentage area of each habitat available within the 501 
10x10km validation landscapes. Results are shown using data from all sites and for an analysis 502 
restricted to data from only those sites showing non-zero toad population predictions when road 503 
mortality effects are included. All correlations are statistically significant at P<0.01.  504 

Observed habitat-use rankings N Landscape-level 
habitat availability 

rankings 

Predicted habitat-use rankings 

Omitting road 
mortality effects 

Including road 
mortality effects 

All sites 70 0.785 0.840 - 
Non-zero population sites 
when including road mortality 

58 0.738 0.793 0.815 

  505 
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4. Discussion  506 
 507 
4.1 Validation 508 
 509 
The validation results suggest that the general form and conceptualisation of the *4pop model 510 
family is relevant for a wide range of species. All models’ predictions showed positive relationships 511 
with the observational data, although R2 values were generally low. This emphasises the continued 512 
need for complementary, field-based, ecological surveys before any on-the-ground land-use 513 
decisions are actually made. It’s likely that process-based models will always struggle to match the 514 
evaluation metrics of SDMs, which are by definition fitted to the data, because the act of simulating 515 
(often plastic) foraging/population processes adds additional noise. However, good evaluation 516 
metrics when matching to current/present-day observational datasets are not always indicative of 517 
good predictive power in novel/future situations (Irturbide et al. 2018; Warren et al. 2020), 518 
suggesting that modelling these ecological processes and compromising on predictive power over 519 
current data may be acceptable if achieving greater predictive confidence in unfamiliar future 520 
scenarios is the aim. What is considered sufficient predictive power will likely vary according to the 521 
decision-maker and the situation, and it is unlikely (and generally inadvisable) for decisions to be 522 
made based on model predictions alone. Importantly, we have shown these models have the 523 
potential to make ecologically meaningful predictions, which could be used to inform discussions 524 
within a decision-making process that also integrates information from other sources.  525 
 526 
Our explorations demonstrate there are multiple opportunities to test the realism of process-based 527 
models. We validated their species activity predictions at different spatial scales (1km, 750m and 528 
species presence at 1m resolution; Table 5; Fig. 6), checked their ability to reproduce context-529 
dependent interactions derived from statistical model fits to observational data (Table 6) and 530 
quantified their ability to reproduce observed habitat preferences of species (Table 7). We also 531 
ensured the models reproduced observed distributions of roost sizes and minimum area responses 532 
to habitat fragmentation (Fig. S1; Fig. S2). These additional checks help assess performance of the 533 
models’ underlying processes and we suggest those developing process-based models could be 534 
imaginative in finding multiple approaches to validate their functionality.  535 
 536 
Our model validations made much use of widespread systematic monitoring data collected by 537 
volunteers, since this offers large numbers of geolocated measurements of relative 538 
abundance/activity collected using a systematic survey methodology (to minimise noise from 539 
observational biases) in a wide variety of landcover types and contexts (to maximise measurement 540 
range and leverage) across a large spatial extent (to increase applicability). The fine resolution of 541 
*4pop model outputs gave flexibility to resample predictions to match the spatial extent of the 542 
observational sampling units used across different schemes. However, more intensive field study 543 
data (from mark-recapture, radio-tracking and other detailed studies, as appropriate for each taxon) 544 
was used in model parameterisation (see Tables 2 & 3). This emphasises that, although models may 545 
provide a powerful tool, there is a continued need to support large-scale monitoring and detailed 546 
field/experimental studies in order to obtain the observational measurements necessary to underpin 547 
this modelling.  548 
 549 
4.2 Species-level versus guild-level approaches 550 
 551 
We compared species-level versions of the bird models with guild-level versions, which collectively 552 
model a group of species with similar life histories, habitat usage and movement ranges. The guild-553 
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level parameterisation outperformed the species-level parameterisation for woodland specialists, 554 
but not for farmland passerines.  555 
 556 
Woodland specialist species (not only of birds but also of other taxa e.g. bats) often depend on the 557 
presence of specific woodland vegetation structures (Hewson et al. 2011), which are generally not 558 
mapped, making it difficult to accurately predict the observed abundance of an individual woodland 559 
specialist species, but easier to predict the observed abundance of woodland specialists as a group. 560 
For this guild, grouping averages over these individual species peculiarities to produce a guild-level 561 
response that aligns better with the coarser habitat distinctions present in the spatial input data. For 562 
the farmland guild, the poorly/un-mapped effects of farmland management practices are likely 563 
being confounded with the varied needs of this smaller guild (Vickery et al. 2004; Baker et al. 2012) 564 
such that aggregating to guild level only increases variability.  565 
 566 
Comparing bird4pop’s woodland specialist and woodland generalist parameterisations (Table 5) 567 
shows that the activity patterns of stricter habitat specialists (whose broad habitat types are 568 
reasonably well mapped) are more easily reproduced than those of more flexible species. This may 569 
be due to a number of factors: i. a generalist may utilise small patches of habitat (e.g. isolated 570 
shrubs) that may not appear in remote-sensed mapping data and/or may not even be considered by 571 
human observers to be ‘habitat’ (Franklin et al. 2009); ii. the more generalist the species is, the more 572 
likely the locations utilised in reality will be due to some small positive difference of one habitat 573 
patch over another that again will not appear in mapping data (e.g. Petrovan et al. 2013); iii. 574 
opportunistic generalist species may show large plasticity in foraging processes (e.g. Guerrero‐575 
Sanchez et al. 2022; Ceia et al. 2014); iv. although generalists as a group use a greater range of 576 
habitats, each individual species may use a different subset of habitats (Hinsley et al. 1995; Fuller et 577 
al. 2001), such that the group as a whole is less homogeneous and therefore harder to predict 578 
accurately (Chetcuti et al. 2019). The generalist behaviour of common pipistrelle may therefore be a 579 
contributing factor to the relatively low R2 for the bat4pop model.  580 
 581 
4.3 Supporting biodiversity-inclusive landscape decision-making 582 
 583 
Mobile species that require access to multiple habitat types are often not well catered for by 584 
decision-making approaches that fail to take into account habitat configurations and species’ 585 
movement ranges (e.g. habitat accounting; Gardner et al. 2022). In contrast, our model adaptations 586 
show poll4pop’s highly flexible framework can represent multi-habitat use over a wide range of taxa, 587 
spatial and temporal scales. From originally simulating seasonally-resolved short-range foraging of 588 
bees around their nests and longer-range dispersal of their reproductives to new nest sites, we have 589 
adapted the model to simulate analogous behaviour by birds, with probabilistic yearly survival 590 
included for these longer lived species. Other adaptations simulate the home range behaviour of 591 
lizards, core activity zones of bats resulting from separation of roosting and foraging habitat and the 592 
seasonally distinct distributions of amphibians due to migration from aquatic to terrestrial habitats. 593 
This enables the models to identify situations where population sizes may be limited by availability 594 
of one particular resource despite ample supply of another. For example, they indicate the changing 595 
relationship between yellowhammer abundance and arable cover can be explained by populations 596 
being forage resource limited in pasture-dominated landscapes and nest site limited in arable-597 
dominated landscapes. Their outputs could therefore help decision-makers take on board the 598 
requirements of multiple taxa and ensure proposed landscape changes do not cause imbalances that 599 
force landscapes into a resource-limited state for any particular species (Pöysä & Pöysä 2002; 600 
Desaegher et al. 2021). 601 



26 
 

 602 
SDMs are already being used to value locations for supporting species within decision-making (e.g. 603 
via biodiversity credit schemes; Simpson et al. 2021), but these correlative models are often driven 604 
by observational data collected when the species is most detectable and may not capture species-605 
habitat associations outside of the peak survey period. If these other habitats are essential for 606 
population persistence, then the species may still be lost, despite data-driven efforts to conserve 607 
habitat with which it is associated (Runge et al. 2014). Process-based models that simulate habitat 608 
use throughout the year, integrating expert knowledge of behaviour outside traditional survey 609 
seasons where needed, could help to avoid such inadvertent negative outcomes. For instance, 610 
amph4pop predicts breeding season activity levels in aquatic habitats, where this taxon is most 611 
commonly surveyed, as well as patterns of terrestrial habitat use during the non-breeding season 612 
(Fig. 3). The original poll4pop model is temporally resolved into three seasons each able to show a 613 
different pattern of habitat use, and other adaptations, such as bird4pop, could be easily extended 614 
to simulate non-breeding season habitat use in addition to the breeding season habitat-use 615 
simulated here, as required.  616 
 617 
Sedentary species in particular often show patchy underoccupancy of habitat due to local extinctions 618 
and inability to recolonise (Dorrough & Ash 1999). Fig 5 shows how simulations can be run where 619 
only some suitable habitat patches are initially seeded and the population processes run over 620 
multiple years to probabilistically assess the species’ ability to (re)colonise other areas. This 621 
functionality could enable decision-makers to move away from assumptions that habitat presence 622 
equals species presence and help estimate potential success of landscape-scale restoration plans 623 
(Brudvig & Catano 2021) for species with different habitat preferences and dispersal abilities.  624 
 625 
Within the original poll4pop model, straight-line travel paths are implicitly assumed and there are no 626 
barriers to movement. The amph4pop adaptation introduced road mortality effects, since roads 627 
represent significant barriers for amphibians (Beebee 2013), and this improved agreement with 628 
observed toad habitat use (Table 7). This suggests incorporating barrier effects into the framework is 629 
worthwhile and possible, but further work is needed to implement this without significantly 630 
increasing run times. Likewise, making the models sensitive to availability of commuting habitat (as 631 
distinct from foraging habitat) for species such as bats (Pinaud et al. 2018) may also be beneficial. 632 
Incorporating other key factors (e.g. artificial lighting effects, hibernation site/winter food limitation 633 
etc.) could be done using existing functionality and would increase the models’ ability to represent 634 
species’ interests in decision-making.  635 
 636 
A key challenge when building any biodiversity models is discrepancies between the habitat 637 
distinctions available in (usually remote-sensed) input landcover data and habitat distinctions of 638 
relevance to the modelled species. The *4pop models can account for small-scale habitat features 639 
(see §2.1) and be parameterised for a finely-graded habitat classification system (§2.4) to capture 640 
the needs of species and of decision-makers investigating future scenarios. However, their 641 
operationalisation in the present day (and the set of species to which they can be confidently 642 
applied) may be limited in practice by the coarser spatial and thematic resolution of current 643 
landcover datasets (Betts et al. 2014). This is particularly problematic if poorly detected, small or 644 
ephemeral habitat features are essential resources for seeding populations in the digitised landscape 645 
but missing from input landcover data. Incorporating on-the-ground survey information, structural 646 
descriptors from LiDAR data and future advances in very high resolution remote-sensing may help to 647 
address this issue and increase predictive power (Bradter et al. 2020; Price et al. 2023).  648 
 649 
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Initial discussions and trials with UK decision-makers (those already supported by/collaborating with 650 
the model co-developers’ various organisations) have highlighted a number of ways these models 651 
could be integrated into decision-making. Decisionmakers attempting to target, tailor and co-652 
ordinate conservation efforts can contrast the species activity predictions with the maps of relative 653 
habitat resource provision to identify high activity areas to protect and examine why other areas lack 654 
species activity (e.g. through a deficit of one or more types of resources). Those trying to motivate 655 
conservation action locally can use before-and-after simulations to demonstrate the potential 656 
consequences of proposed habitat interventions (as in Gardner et al. 2021). Decisionmakers 657 
balancing confidence and risk across multiple outcomes can make use of multiple simulations to 658 
propagate uncertainty in underlying ecological parameters through to model outputs (as in Image et 659 
al. 2022). We have shown that the models can be run at national extent (Fig. S5) and still produce 660 
fine (10m) resolution outputs, with the influence of individual field-level and sub-field-level habitats 661 
clearly recognisable; this means that local, regional and national decisionmakers could all make use 662 
of the same model, potentially making it easier to co-ordinate planning and assessment of national 663 
policy and local action. The relative abundance predictions from the models could potentially help 664 
decisionmakers assess how proposed landscape changes might impact targets to improve not only 665 
biodiversity but also bioabundance (e.g. The Environmental Targets (Biodiversity) (England) 666 
Regulations 2023). Finally, the models can act as a discussion aid among groups of decisionmakers 667 
and offer an opportunity to share ecological knowledge: engaging with model outputs could help 668 
decision-makers gain a deeper understanding of how species are using landscapes, which may 669 
increase their ability to intuitively make biodiversity-inclusive decisions. Further work is now needed 670 
to systematically explore the models’ utility for different types of decision-makers.   671 
 672 
 673 
5. Conclusions 674 
 675 
With increasing ambitions towards large-scale redesigns of landscapes, of directing human-centric 676 
development away from areas of value to biodiversity and of increasing habitat provision to reverse 677 
species declines, there is a pressing need for models that account for species’ varied responses to 678 
landscape and that can estimate the potential biodiversity consequences of landscape changes. Such 679 
models must take a holistic view of landscape use across species’ lifecycles and integrate movement 680 
ecology, so that effects of habitat context and configuration are incorporated and any discrepancies 681 
between the spatial scale of human decision-making and spatial scales of importance to species are 682 
highlighted. If models are to support effective conservation actions, we must also ensure that 683 
consideration of biodiversity is not inadvertently biased towards the needs of easily modelled or 684 
commonly studied species. We propose that the *4pop framework fills a gap by offering a flexible, 685 
process-based modelling approach, adaptable to the needs of multiple species, that can integrate 686 
different forms of knowledge (data from field studies, expert opinion, citizen science and 687 
standardised monitoring, alongside landcover data) to help address these challenges.  688 
 689 
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